cover

Experimental and Theoretical NANOTECHNOLOGY

About the Journal :

Experimental and Theoretical NANOTECHNOLOGY (ETN) is a multidisciplinary peer-reviewed international journal published four issues a year. It includes specialized research papers, short communications, reviews and selected conference papers in special issues on the characterization, synthesis, processing, structure and properties of different principles and applications of NANOTECHNOLOGY; with focus on advantageous achievements and applications for the specialists in engineering, chemistry, physics and materials science.

ETN covers and publishes all aspects of fundamental and applied researches of experimental and theoretical nanoscale technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology within the scope of the journal. ETN aims to acquire the recent and outstanding researches for the benefit of the human being.



SI-DOPED POLYCRYSTALLINE VIA CHEMICAL DEPOSITION

Microcrystalline diamond films doped with silicon have been grown on aluminum nitride substrates by a microwave plasma CVD. The doping has been performed via adding silane in various concentrations to CH4–H2 reaction gas mixture in course of the deposition process. The films produced at the substrate temperatures of 750 to 950°C have been characterized by SEM, AFM, Raman and photoluminescence (PL) spectroscopy to assess the effect of Si doping on the diamond structure. The doped films showed bright photoluminescence of silicon-vacancy (SiV) color centers at 738 nm wavelength as well as noticeable side band at 723 nm. The optimum doping condition (SiH4/CH4 = 0.6%), that maximize the SiV PL emission, was determined for the range of silane concentrations SiH4/CH4 (0.0 – 0.9%) explored. A further PL enhancement can be achieved by increase in the substrate temperature. The applied in situ doping from gas phase is shown to be an easy and effective method to incorporate Si in diamond in a controllableway.

Keywords: CVD; AlN; PL.